Markdown編輯器添加Latex數(shù)學(xué)公式教程
本文為L(zhǎng)atex數(shù)學(xué)公式在Markdown環(huán)境下的語(yǔ)法指引,以幫助每一個(gè)寫(xiě)文章的人便利地把數(shù)學(xué)公式完整的編輯出來(lái),并作出優(yōu)美的排版。
1. Markdown中的Latex格式
LateX數(shù)學(xué)公式有兩種:行中公式和獨(dú)立公式(行間公式)。行中公式放在文中與其他文字混排,獨(dú)立公式則單獨(dú)成行。
1.1 行中公式
$E=mc^2$
$E=mc^2$
?
1.2 獨(dú)立公式
$$E=mc^2$$
$$E=mc^2$$
?
2.Latex數(shù)學(xué)公式
2.1 函數(shù)、符號(hào)及特殊字符
-
指數(shù)
$\exp_a b = a^b, \exp b = e^b, 10^m$
$\exp_a b = a^b, \exp b = e^b, 10^m$
? -
對(duì)數(shù)
\ln c, \lg d = \log e, \log_{10} f
$\ln c, \lg d = \log e, \log_{10} f$
? -
三角函數(shù)
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f
$\sin a, \cos b, \tan c, \cot d, \sec e, \csc f$
?
\arcsin a, \arccos b, \arctan c
$\arcsin a, \arccos b, \arctan c$
?
\sinh a, \cosh b, \tanh c, \coth d
$\sinh a, \cosh b, \tanh c, \coth d$
?
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n
$\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n$
?
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q
$\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q$
? -
絕對(duì)值
\left\vert s \right\vert
$\left\vert s \right\vert$
? -
最大值,最小值
\min(x,y), \max(x,y$)
$\min(x,y), \max(x,y$)
?
2.2 界限,極限
\min x, \max y, \inf s, \sup t
$\min x, \max y, \inf s, \sup t$
?
\lim u, \liminf v, \limsup w
$\lim u, \liminf v, \limsup w$
?
\lim_{x \to \infty} \frac{1}{n(n+1)}
$\lim_{x \to \infty} \frac{1}{n(n+1)}$
?
\dim p, \deg q, \det m, \ker\phi
$\dim p, \deg q, \det m, \ker\phi$
?
2.3 投射
\Pr j, \hom l, \lVert z \rVert, \arg z
$\Pr j, \hom l, \lVert z \rVert, \arg z$
?
2.4 微積分和導(dǎo)數(shù)
dt, \mathrmk6zqhab033oat, \partial t, \nabla\psi
$dt, \mathrmk6zqhab033oat, \partial t, \nabla\psi$
?
dy/dx, \mathrmk6zqhab033oay/\mathrmk6zqhab033oax, \frac{dy}{dx}, \frac{\mathrmk6zqhab033oay}{\mathrmk6zqhab033oax}, \frac{\partial^2}{\partial x_1\partial x_2}y
$dy/dx, \mathrmk6zqhab033oay/\mathrmk6zqhab033oax, \frac{dy}{dx}, \frac{\mathrmk6zqhab033oay}{\mathrmk6zqhab033oax}, \frac{\partial^2}{\partial x_1\partial x_2}y$
?
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y
$\prime, \backprime, f^\prime, f’, f’', f^{(3)}, \dot y, \ddot y$
?
2.5 類(lèi)字母符號(hào)及常數(shù)
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar
$\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar$
?
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS
$\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS$
?
2.6 模運(yùn)算
s_k \equiv 0 \pmod{m}
$s_k \equiv 0 \pmod{m}$
?
a \bmod b
$a \bmod b$
?
\gcd(m, n), \operatorname{lcm}(m, n)
$\gcd(m, n), \operatorname{lcm}(m, n)$
?
\mid, \nmid, \shortmid, \nshortmid
$\mid, \nmid, \shortmid, \nshortmid$
?
2.7 根號(hào)
\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}
$\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}$
?
2.8 集合
\empty, \emptyset, \varnothing
$\empty, \emptyset, \varnothing$
\in, \notin \not\in, \ni, \not\ni
$\in, \notin \not\in, \ni, \not\ni$
\cap, \Cap, \sqcap, \bigcap
$\cap, \Cap, \sqcap, \bigcap$
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus
$\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus$
\setminus, \smallsetminus, \times
$\setminus, \smallsetminus, \times$
\subset, \Subset, \sqsubset
$\subset, \Subset, \sqsubset$
\supset, \Supset, \sqsupset
$\supset, \Supset, \sqsupset$
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq
$\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq$
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq
$\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq$
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq
$\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq$
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq
$\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq$
2.9 運(yùn)算符
+, -, \pm, \mp, \dotplus
$+, -, \pm, \mp, \dotplus$
\times, \div, \divideontimes, /, \backslash
$\times, \div, \divideontimes, /, \backslash$
\cdot, * \ast, \star, \circ, \bullet
$\cdot, * \ast, \star, \circ, \bullet$
\boxplus, \boxminus, \boxtimes, \boxdot
$\boxplus, \boxminus, \boxtimes, \boxdot$
\oplus, \ominus, \otimes, \oslash, \odot
$\oplus, \ominus, \otimes, \oslash, \odot$
\circleddash, \circledcirc, \circledast
$\circleddash, \circledcirc, \circledast$
\bigoplus, \bigotimes, \bigodot
$\bigoplus, \bigotimes, \bigodot$
?
2.10 關(guān)系符號(hào)
=, \ne, \neq, \equiv, \not\equiv
$=, \ne, \neq, \equiv, \not\equiv$
\doteq, \doteqdot, ``\overset{\underset{\mathrm{def}}{}}{=},``:=
$\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=},:=$
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong
$\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto
$\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto$
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot
$<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot
$>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq
$\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq$
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq
$\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq$
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless
$\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless$
\leqslant, \nleqslant, \eqslantless``\geqslant, \ngeqslant, \eqslantgtr
$\leqslant, \nleqslant, \eqslantless,\geqslant, \ngeqslant, \eqslantgtr$
\lesssim, \lnsim, \lessapprox, \lnapprox``\gtrsim, \gnsim, \gtrapprox, \gnapprox
$\lesssim, \lnsim, \lessapprox, \lnapprox, \gtrsim, \gnsim, \gtrapprox, \gnapprox$
\prec, \nprec, \preceq, \npreceq, \precneqq``\succ, \nsucc, \succeq, \nsucceq, \succneqq
$\prec, \nprec, \preceq, \npreceq, \precneqq,\succ, \nsucc, \succeq, \nsucceq, \succneqq$
\preccurlyeq, \curlyeqprec``\succcurlyeq, \curlyeqsucc
$\preccurlyeq, \curlyeqprec,\succcurlyeq, \curlyeqsucc$
\precsim, \precnsim, \precapprox, \precnappro``\succsim, \succnsim, \succapprox, \succnapprox
$\precsim, \precnsim, \precapprox, \precnappro,\succsim, \succnsim, \succapprox, \succnapprox$
2.11 幾何符號(hào)
\parallel, \nparallel, \shortparallel, \nshortparallel
$\parallel, \nparallel, \shortparallel, \nshortparallel$
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ
$\perp, \angle, \sphericalangle, \measuredangle, 45^\circ$
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar
$\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar$
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown
$\bigcirc, \triangle, \bigtriangleup, \bigtriangledown$
\vartriangle, \triangledown``\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright
$\vartriangle, \triangledown,\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright$
2.12 邏輯符號(hào)
\forall, \exists, \nexists
$\forall, \exists, \nexists$
\therefore, \because, \And
$\therefore, \because, \And$
\lor, \vee, \curlyvee, \bigvee
$\lor, \vee, \curlyvee, \bigvee$
\bar{q}, \bar{abc}, \overline{q}, \overline{abc},``\lnot \neg, \not\operatorname{R}, \bot, \top
$\bar{q}, \bar{abc}, \overline{q}, \overline{abc},\lnot \neg, \not\operatorname{R}, \bot, \top$
\vdash, \dashv, \vDash, \Vdash, \models
$\vdash, \dashv, \vDash, \Vdash, \models$
\Vvdash, \nvdash ,\nVdash ,\nvDash ,\nVDash
$\Vvdash, \nvdash, \nVdash ,\nvDash ,\nVDash$
\ulcorner \urcorner \llcorner \lrcorner
$\ulcorner \urcorner \llcorner \lrcorner$
2.13 箭頭
\Rrightarrow, \Lleftarrow
$\Rrightarrow, \Lleftarrow$
\Rightarrow, \nRightarrow, \Longrightarrow \implies
$\Rightarrow, \nRightarrow, \Longrightarrow \implies$
\Leftarrow, \nLeftarrow, \Longleftarrow
$\Leftarrow, \nLeftarrow, \Longleftarrow$
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff
$\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff$
\Uparrow, \Downarrow, \Updownarrow
$\Uparrow, \Downarrow, \Updownarrow$
\rightarrow \to, \nrightarrow, \longrightarrow
$\rightarrow \to, \nrightarrow, \longrightarrow$
\leftarrow \gets, \nleftarrow, \longleftarrow
$\leftarrow \gets, \nleftarrow, \longleftarrow$
\leftrightarrow, \nleftrightarrow, \longleftrightarrow
$\leftrightarrow, \nleftrightarrow, \longleftrightarrow$
\uparrow, \downarrow, \updownarrow
$\uparrow, \downarrow, \updownarrow$
\nearrow, \swarrow, \nwarrow, \searrow
$\nearrow, \swarrow, \nwarrow, \searrow$
\mapsto, \longmapsto
$\mapsto, \longmapsto$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
$\rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft,\upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright
$\curvearrowleft, \circlearrowleft, \Lsh \upuparrows, \rightrightarrows, \rightleftarrows, \rightarrowtail, \looparrowright$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft
$\curvearrowright, \circlearrowright, \Rsh, \downdownarrows, \leftleftarrows, \leftrightarrows, \leftarrowtail, \looparrowleft$
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow
$\hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow$
2.14 特殊符號(hào)
省略號(hào):數(shù)學(xué)公式中常見(jiàn)的省略號(hào)有兩種,\ldots
表示與文本底線對(duì)齊的省略號(hào),\cdots
表示與文本中線對(duì)齊的省略號(hào)。
\amalg \% \dagger \ddagger \ldots \cdots
$\amalg % \dagger \ddagger \ldots \cdots$
\smile \frown \wr \triangleleft \triangleright
$\smile \frown \wr \triangleleft \triangleright$
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp
$\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp$
2.15 其他符號(hào)
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes
$\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes$
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq
$\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq$
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork
$\intercal \barwedge \veebar \doublebarwedge \between \pitchfork$
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright
$\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright$
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq
$\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq$
2.16 上標(biāo)、下標(biāo)及積分等
^
表示上標(biāo), _
表示下標(biāo)。如果上下標(biāo)的內(nèi)容多于一個(gè)字符,需要用 {}
將這些內(nèi)容括成一個(gè)整體。上下標(biāo)可以嵌套,也可以同時(shí)使用。
-
上標(biāo)
a^2
$a^2$ -
下標(biāo)
a_2
$a_2$ -
組合
a^{2+2}
$a^{2+2}$
a_{i,j}
$a_{i,j}$ -
結(jié)合上下標(biāo)
x_2^3
$x_2^3$ -
前置上下標(biāo)
{}_1^2\!X_3^4
${}_1^2!X_3^4$ -
導(dǎo)數(shù)(HTML)
x'
$x’$ -
導(dǎo)數(shù)(PNG)
x^\prime
$x^\prime$ -
導(dǎo)數(shù)(錯(cuò)誤)
x\prime
$x\prime$ -
導(dǎo)數(shù)點(diǎn)
\dot{x}
$\dot{x}$
\ddot{y}
$\ddot{y}$ -
向量
\vec{c}
(只有一個(gè)字母)
$\vec{c}$
\overleftarrow{a b}
,\overrightarrow{c d}
$\overleftarrow{a b}$,$\overrightarrow{c d}$
\overleftrightarrow{a b}``\widehat{e f g}
$\overleftrightarrow{a b}$, $\widehat{e f g}$ -
上弧
(注:正確應(yīng)該用 \overarc,但在這里行不通。要用建議的語(yǔ)法作為解決辦法。)(使用 \ overarc 時(shí),需要引入 {arcs} 包。)
\overset{\frown} {AB}
$\overset{\frown} {AB}$ -
上下劃線
\overline{h i j}
,\underline{k l m}
$\overline{h i j}$, $\underline{k l m}$ -
上括號(hào)
\overbrace{1+2+\cdots+100}
$\overbrace{1+2+\cdots+100}$
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}
$\begin{matrix} 5050 \ \overbrace{ 1+2+\cdots+100 } \end{matrix}$ -
下括號(hào)
\underbrace{a+b+\cdots+z}
$\underbrace{a+b+\cdots+z}$
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}
$\begin{matrix} \underbrace{ a+b+\cdots+z } \ 26 \end{matrix}$ -
求和(累加)
\sum_{k=1}^N k^2
$\sum_{k=1}^N k^2$
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
$\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}$ -
求積(累乘)
\prod_{i=1}^N x_i
$\prod_{i=1}^N x_i$
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}
$\begin{matrix} \prod_{i=1}^N x_i \end{matrix}$ -
上積
\coprod_{i=1}^N x_i
$\coprod_{i=1}^N x_i$
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
$\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}$ -
極限
\lim_{n \to \infty}x_n
$\lim_{n \to \infty}x_n$
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
$\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}$ -
積分
\int_{-N}^{N} e^x\, {\rm d}x
$\int_{-N}^{N} e^x, {\rm d}x$
本例中\,
和{\rm d}
部分可省略,但建議加入,能使式子更美觀。{\rm d}
可以用\mathrmk6zqhab033oa
等價(jià)替換。
\begin{matrix} \int_{-N}^{N} e^x\, \mathrmk6zqhab033oax \end{matrix}
(矩陣中積分符號(hào)變小)
$\begin{matrix} \int_{-N}^{N} e^x, \mathrmk6zqhab033oax \end{matrix}$ -
雙重積分
\iint_{D}^{W} \, \mathrmk6zqhab033oax\,\mathrmk6zqhab033oay
$\iint_{D}^{W} , \mathrmk6zqhab033oax,\mathrmk6zqhab033oay$ -
三重積分
\iiint_{E}^{V} \, \mathrmk6zqhab033oax\,\mathrmk6zqhab033oay\,\mathrmk6zqhab033oaz
$\iiint_{E}^{V} , \mathrmk6zqhab033oax,\mathrmk6zqhab033oay,\mathrmk6zqhab033oaz$ -
閉合的曲線、曲面積分
\oint_{C} x^3\, \mathrmk6zqhab033oax + 4y^2\, \mathrmk6zqhab033oay
$\oint_{C} x^3, \mathrmk6zqhab033oax + 4y^2, \mathrmk6zqhab033oay$ -
交集
\bigcap_1^{n} p
$\bigcap_1^{n} p$ -
并集
\bigcup_1^{k} p
$\bigcup_1^{k} p$
2.17 分?jǐn)?shù)
通常使用\frac {分子} {分母}
命令產(chǎn)生一個(gè)分?jǐn)?shù),分?jǐn)?shù)可嵌套。便捷情況可直接輸入 \frac ab
來(lái)快速生成一個(gè) $\frac {a} $。如果分式很復(fù)雜,亦可使用 分子 \over 分母
命令,此時(shí)分?jǐn)?shù)僅有一層。
功能|語(yǔ)法|效果
-
分?jǐn)?shù)
\frac{2}{4}=0.5
$\frac{2}{4}=0.5$ -
小型分?jǐn)?shù)
\tfrac{2}{4} = 0.5
$\tfrac{2}{4} = 0.5$ -
連分式(大型嵌套分式)
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
$\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a$ -
大型不嵌套分式
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
$\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a$
2.18 二項(xiàng)式系數(shù)
-
二項(xiàng)式系數(shù)
\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
$\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$ -
小型二項(xiàng)式系數(shù)
\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
$\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$ -
大型二項(xiàng)式系數(shù)
\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
$\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$
在以e為底的指數(shù)函數(shù)、極限和積分中盡量不要使用 \frac
符號(hào):它會(huì)使整段函數(shù)看起來(lái)很怪,而且可能產(chǎn)生歧義。因此,它在專(zhuān)業(yè)數(shù)學(xué)排版中幾乎從不出現(xiàn)。
橫著寫(xiě)這些分式,中間使用斜線間隔/
(用斜線代替分?jǐn)?shù)線)。
示例:
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
顯示:
::: hljs-center
$\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \
\hline \
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \
\int_{-\frac\pi2}^\frac\pi2 \sin x,dx & \int_{-\pi/2}^{\pi/2}\sin x,dx \
\end{array}$
:::
2.19 矩陣、條件表達(dá)式、方程組
語(yǔ)法:
\begin{類(lèi)型}
公式內(nèi)容
\end{類(lèi)型}
類(lèi)型可以是:矩陣 matrix
pmatrix
bmatrix
Bmatrix
vmatrix
Vmatrix
、條件表達(dá)式 cases
、多行對(duì)齊方程式 aligned
、數(shù)組 array
。
在公式內(nèi)容中:在每一行中插入 & 來(lái)指定需要對(duì)齊的內(nèi)容,在每行結(jié)尾處使用 \ 換行。
- 無(wú)框矩陣
在開(kāi)頭使用begin{matrix}
,在結(jié)尾使用end{matrix}
,在中間插入矩陣元素,每個(gè)元素之間插入&
,并在每行結(jié)尾處使用\\
。
\begin{matrix}
x & y \\
z & v
\end{matrix}
hljs-center
$\begin{matrix}
x & y \
z & v
\end{matrix}$
- 有框矩陣
在開(kāi)頭將matrix
替換為pmatrix
bmatrix
Bmatrix
vmatrix
Vmatrix
。
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
$\begin{vmatrix}
x & y \
z & v
\end{vmatrix}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
$\begin{Vmatrix}
x & y \
z & v
\end{Vmatrix}$
使用 \cdots
, $\cdots$, \ddots
,$\cdots$ , \vdots
, $\cdots$ 來(lái)輸入省略符號(hào)。
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
$\begin{bmatrix}
0 & \cdots & 0 \
\vdots & \ddots & \vdots \
0 & \cdots & 0
\end{bmatrix}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
$\begin{Bmatrix}
x & y \
z & v
\end{Bmatrix}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
$\begin{pmatrix}
x & y \
z & v
\end{pmatrix}$
2.20 條件表達(dá)式
f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}
$f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \
3n+1, & \text{if }n\text{ is odd}
\end{cases}$
2.21 多行等式、同余式
人們經(jīng)常想要一列整齊且居中的方程式序列。使用 \begin{aligned}…\end{aligned}
。
\begin{aligned}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{aligned}
$\begin{aligned}
f(x) & = (m+n)^2 \
& = m^2+2mn+n^2 \
\end{aligned}$
\begin{alignedat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
& = m^2-2mn+n^2 \\
\end{alignedat}
$\begin{alignedat}{3}
f(x) & = (m-n)^2 \
f(x) & = (-m+n)^2 \
& = m^2-2mn+n^2 \
\end{alignedat}$
2.22 方程組
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
$\begin{cases}
3x + 5y + z \
7x - 2y + 4z \
-6x + 3y + 2z
\end{cases}$
或
\left\{\begin{aligned}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.
$\left{\begin{aligned}
3x + 5y + z \
7x - 2y + 4z \
-6x + 3y + 2z
\end{aligned}\right.$
2.23 數(shù)組與表格
通常,一個(gè)格式化后的表格比單純的文字或排版后的文字更具有可讀性。數(shù)組和表格均以 \begin{array}
開(kāi)頭,并在其后定義列數(shù)及每一列的文本對(duì)齊屬性,c
l
r
分別代表居中、左對(duì)齊及右對(duì)齊。若需要插入垂直分割線,在定義式中插入 |
,若要插入水平分割線,在下一行輸入前插入 \hline
。與矩陣相似,每行元素間均須要插入&
,每行元素以 \\
結(jié)尾,最后以 \end{array}
結(jié)束數(shù)組。
示例1:
\begin{array}{c|lcr}
n & \text{左對(duì)齊} & \text{居中對(duì)齊} & \text{右對(duì)齊} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
顯示:
$\begin{array}{c|lcr}
n & \text{左對(duì)齊} & \text{居中對(duì)齊} & \text{右對(duì)齊} \
\hline
1 & 0.24 & 1 & 125 \
2 & -1 & 189 & -8 \
3 & -20 & 2000 & 1+10i
\end{array}$
示例2:
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
顯示:
$\begin{array}{lcl}
z & = & a \
f(x,y,z) & = & x + y + z
\end{array}$
示例3:
\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
顯示:
$\begin{array}{lcr}
z & = & a \
f(x,y,z) & = & x + y + z
\end{array}$
示例4:
\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
顯示:
$\begin{array}{ccc}
a & b & S \
\hline
0&0&1\
0&1&1\
1&0&1\
1&1&0\
\end{array}$
2.24 嵌套數(shù)組或表格
多個(gè)數(shù)組/
表格可 互相嵌套 并組成一組數(shù)組/
一組表格。使用嵌套前必須聲明 $$
符號(hào)。
示例:
% outer vertical array of arrays 外層垂直表格
\begin{array}{c}
% inner horizontal array of arrays 內(nèi)層水平表格
\begin{array}{cc}
% inner array of minimum values 內(nèi)層“最小值”數(shù)組
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 內(nèi)層“最大值”數(shù)組
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 內(nèi)層第一行表格組結(jié)束
\\
% inner array of delta values 內(nèi)層第二行Delta值數(shù)組
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
% 內(nèi)層第二行表格組結(jié)束
\end{array}
顯示:
$% outer vertical array of arrays 外層垂直表格
\begin{array}{c}
% inner horizontal array of arrays 內(nèi)層水平表格
\begin{array}{cc}
% inner array of minimum values 內(nèi)層“最小值”數(shù)組
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\
\hline
0 & 0 & 0 & 0 & 0\
1 & 0 & 1 & 1 & 1\
2 & 0 & 1 & 2 & 2\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 內(nèi)層“最大值”數(shù)組
\begin{array}{c|cccc}
\text{max}&0&1&2&3\
\hline
0 & 0 & 1 & 2 & 3\
1 & 1 & 1 & 2 & 3\
2 & 2 & 2 & 2 & 3\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 內(nèi)層第一行表格組結(jié)束
\
% inner array of delta values 內(nèi)層第二行Delta值數(shù)組
\begin{array}{c|cccc}
\Delta&0&1&2&3\
\hline
0 & 0 & 1 & 2 & 3\
1 & 1 & 0 & 1 & 2\
2 & 2 & 1 & 0 & 1\
3 & 3 & 2 & 1 & 0
\end{array}
% 內(nèi)層第二行表格組結(jié)束
\end{array}$
2.25 用數(shù)組實(shí)現(xiàn)帶分割符號(hào)的矩陣
示例:
\left[
\begin{array}{cc|c}
1&2&3\\
4&5&6
\end{array}
\right]
顯示:
$$
\left[
\begin{array}{cc|c}
1&2&3\
4&5&6
\end{array}
\right]
$$
其中 cc|c
代表在一個(gè)三列矩陣中的第二和第三列之間插入分割線。
2.26 括號(hào)
()
、[]
和|
表示符號(hào)本身,使用 \{\}
來(lái)表示 {}
。
- 短括號(hào)
\frac{1}{2}
$\frac{1}{2}$ - 長(zhǎng)括號(hào)
\left(\frac{1}{2} \right)
$\left(\frac{1}{2} \right)$
使用 \left
和 \right
來(lái)創(chuàng)建自動(dòng)匹配高度的 (圓括號(hào)),[方括號(hào)] 和 {花括號(hào)} 。
-
圓括號(hào),小括號(hào)
\left( \frac{a} \right)
$\left( \frac{a} \right)$ -
方括號(hào),中括號(hào)
\left[ \frac{a} \right]
$\left[ \frac{a} \right]$ -
花括號(hào),大括號(hào)
\left{ \frac{a} \right}
$\left{ \frac{a} \right}$ -
角括號(hào)
\left \langle \frac{a} \right \rangle
$\left \langle \frac{a} \right \rangle$ -
單豎線,絕對(duì)值
\left| \frac{a} \right|
$\left| \frac{a} \right|$ -
雙豎線,范
\left \| \frac{a} \right \|
$\left | \frac{a} \right |$ -
取整函數(shù)
\left \lfloor \frac{a} \right \rfloor
$\left \lfloor \frac{a} \right \rfloor$ -
取頂函數(shù)
\left \lceil \frac{c}k6zqhab033oa \right \rceil
$\left \lceil \frac{c}k6zqhab033oa \right \rceil$ -
斜線與反斜線
\left / \frac{a} \right \backslash
$\left / \frac{a} \right \backslash$ -
上下箭頭
\left / \frac{a} \right \backslash
$\left / \frac{a} \right \backslash$ -
混合括號(hào)
\left[ 0,1 \right)
$\left[ 0,1 \right)$ -
單左括號(hào)
\left \{\frac{a} \right.
$\left {\frac{a} \right.$ -
單右括號(hào)
\left. \frac{a} \right \}
$\left. \frac{a} \right }$
可以使用 \big, \Big, \bigg, \Bigg
控制括號(hào)的大小,比如代碼:
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a} \| \right | \big \rangle \Big \} \bigg ] \Bigg )
顯示︰
$\Bigg ( \bigg [ \Big { \big \langle \left | | \frac{a} | \right | \big \rangle \Big } \bigg ] \Bigg )$
2.27 顏色
使用 \color{顏色}{文字}
來(lái)更改特定的文字顏色。
更改文字顏色需要瀏覽器支持,如果瀏覽器不知道你所需的顏色,那么文字將被渲染為黑色。
\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \\
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \\
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}
$\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\
\hline
\end{array}$
