自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

Markdown編輯器添加Latex數(shù)學(xué)公式教程

發(fā)布于 2024-3-29 14:52
瀏覽
0收藏

本文為L(zhǎng)atex數(shù)學(xué)公式在Markdown環(huán)境下的語(yǔ)法指引,以幫助每一個(gè)寫(xiě)文章的人便利地把數(shù)學(xué)公式完整的編輯出來(lái),并作出優(yōu)美的排版。

1. Markdown中的Latex格式

LateX數(shù)學(xué)公式有兩種:行中公式和獨(dú)立公式(行間公式)。行中公式放在文中與其他文字混排,獨(dú)立公式則單獨(dú)成行。

1.1 行中公式

$E=mc^2$
$E=mc^2$
?

1.2 獨(dú)立公式

$$E=mc^2$$
$$E=mc^2$$
?

2.Latex數(shù)學(xué)公式

2.1 函數(shù)、符號(hào)及特殊字符

  • 指數(shù)
    $\exp_a b = a^b, \exp b = e^b, 10^m$
    $\exp_a b = a^b, \exp b = e^b, 10^m$
    ?

  • 對(duì)數(shù)
    \ln c, \lg d = \log e, \log_{10} f
    $\ln c, \lg d = \log e, \log_{10} f$
    ?

  • 三角函數(shù)
    \sin a, \cos b, \tan c, \cot d, \sec e, \csc f
    $\sin a, \cos b, \tan c, \cot d, \sec e, \csc f$
    ?
    \arcsin a, \arccos b, \arctan c
    $\arcsin a, \arccos b, \arctan c$
    ?
    \sinh a, \cosh b, \tanh c, \coth d
    $\sinh a, \cosh b, \tanh c, \coth d$
    ?
    \operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n
    $\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n$
    ?
    \operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q
    $\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q$
    ?

  • 絕對(duì)值
    \left\vert s \right\vert
    $\left\vert s \right\vert$
    ?

  • 最大值,最小值
    \min(x,y), \max(x,y$)
    $\min(x,y), \max(x,y$)
    ?

2.2 界限,極限

\min x, \max y, \inf s, \sup t
$\min x, \max y, \inf s, \sup t$
?
\lim u, \liminf v, \limsup w
$\lim u, \liminf v, \limsup w$
?
\lim_{x \to \infty} \frac{1}{n(n+1)}
$\lim_{x \to \infty} \frac{1}{n(n+1)}$
?
\dim p, \deg q, \det m, \ker\phi
$\dim p, \deg q, \det m, \ker\phi$
?

2.3 投射

\Pr j, \hom l, \lVert z \rVert, \arg z
$\Pr j, \hom l, \lVert z \rVert, \arg z$
?

2.4 微積分和導(dǎo)數(shù)

dt, \mathrmk6zqhab033oat, \partial t, \nabla\psi
$dt, \mathrmk6zqhab033oat, \partial t, \nabla\psi$
?

dy/dx, \mathrmk6zqhab033oay/\mathrmk6zqhab033oax, \frac{dy}{dx}, \frac{\mathrmk6zqhab033oay}{\mathrmk6zqhab033oax}, \frac{\partial^2}{\partial x_1\partial x_2}y
$dy/dx, \mathrmk6zqhab033oay/\mathrmk6zqhab033oax, \frac{dy}{dx}, \frac{\mathrmk6zqhab033oay}{\mathrmk6zqhab033oax}, \frac{\partial^2}{\partial x_1\partial x_2}y$
?

\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y
$\prime, \backprime, f^\prime, f’, f’', f^{(3)}, \dot y, \ddot y$
?

2.5 類(lèi)字母符號(hào)及常數(shù)

\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar
$\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar$
?

\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS
$\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS$
?

2.6 模運(yùn)算

s_k \equiv 0 \pmod{m}
$s_k \equiv 0 \pmod{m}$
?

a \bmod b
$a \bmod b$
?

\gcd(m, n), \operatorname{lcm}(m, n)
$\gcd(m, n), \operatorname{lcm}(m, n)$
?

\mid, \nmid, \shortmid, \nshortmid
$\mid, \nmid, \shortmid, \nshortmid$
?

2.7 根號(hào)

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}
$\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}$
?

2.8 集合

\empty, \emptyset, \varnothing
$\empty, \emptyset, \varnothing$

\in, \notin \not\in, \ni, \not\ni
$\in, \notin \not\in, \ni, \not\ni$

\cap, \Cap, \sqcap, \bigcap
$\cap, \Cap, \sqcap, \bigcap$

\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus
$\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus$

\setminus, \smallsetminus, \times
$\setminus, \smallsetminus, \times$

\subset, \Subset, \sqsubset
$\subset, \Subset, \sqsubset$

\supset, \Supset, \sqsupset
$\supset, \Supset, \sqsupset$

\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq
$\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq$

\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq
$\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq$

\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq
$\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq$

\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq
$\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq$

2.9 運(yùn)算符

+, -, \pm, \mp, \dotplus
$+, -, \pm, \mp, \dotplus$

\times, \div, \divideontimes, /, \backslash
$\times, \div, \divideontimes, /, \backslash$

\cdot, * \ast, \star, \circ, \bullet
$\cdot, * \ast, \star, \circ, \bullet$

\boxplus, \boxminus, \boxtimes, \boxdot
$\boxplus, \boxminus, \boxtimes, \boxdot$

\oplus, \ominus, \otimes, \oslash, \odot
$\oplus, \ominus, \otimes, \oslash, \odot$

\circleddash, \circledcirc, \circledast
$\circleddash, \circledcirc, \circledast$

\bigoplus, \bigotimes, \bigodot
$\bigoplus, \bigotimes, \bigodot$
?

2.10 關(guān)系符號(hào)

=, \ne, \neq, \equiv, \not\equiv
$=, \ne, \neq, \equiv, \not\equiv$
\doteq, \doteqdot, ``\overset{\underset{\mathrm{def}}{}}{=},``:=
$\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=},:=$

\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong
$\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$

\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto
$\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto$

<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot
$<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$

>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot
$>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq
$\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq$

\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq
$\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq$

\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless
$\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless$

\leqslant, \nleqslant, \eqslantless``\geqslant, \ngeqslant, \eqslantgtr
$\leqslant, \nleqslant, \eqslantless,\geqslant, \ngeqslant, \eqslantgtr$

\lesssim, \lnsim, \lessapprox, \lnapprox``\gtrsim, \gnsim, \gtrapprox, \gnapprox
$\lesssim, \lnsim, \lessapprox, \lnapprox, \gtrsim, \gnsim, \gtrapprox, \gnapprox$

\prec, \nprec, \preceq, \npreceq, \precneqq``\succ, \nsucc, \succeq, \nsucceq, \succneqq
$\prec, \nprec, \preceq, \npreceq, \precneqq,\succ, \nsucc, \succeq, \nsucceq, \succneqq$

\preccurlyeq, \curlyeqprec``\succcurlyeq, \curlyeqsucc
$\preccurlyeq, \curlyeqprec,\succcurlyeq, \curlyeqsucc$

\precsim, \precnsim, \precapprox, \precnappro``\succsim, \succnsim, \succapprox, \succnapprox
$\precsim, \precnsim, \precapprox, \precnappro,\succsim, \succnsim, \succapprox, \succnapprox$

2.11 幾何符號(hào)

\parallel, \nparallel, \shortparallel, \nshortparallel
$\parallel, \nparallel, \shortparallel, \nshortparallel$

\perp, \angle, \sphericalangle, \measuredangle, 45^\circ
$\perp, \angle, \sphericalangle, \measuredangle, 45^\circ$

\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar
$\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar$

\bigcirc, \triangle, \bigtriangleup, \bigtriangledown
$\bigcirc, \triangle, \bigtriangleup, \bigtriangledown$

\vartriangle, \triangledown``\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright
$\vartriangle, \triangledown,\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright$

2.12 邏輯符號(hào)

\forall, \exists, \nexists
$\forall, \exists, \nexists$
\therefore, \because, \And
$\therefore, \because, \And$

\lor, \vee, \curlyvee, \bigvee
$\lor, \vee, \curlyvee, \bigvee$

\bar{q}, \bar{abc}, \overline{q}, \overline{abc},``\lnot \neg, \not\operatorname{R}, \bot, \top
$\bar{q}, \bar{abc}, \overline{q}, \overline{abc},\lnot \neg, \not\operatorname{R}, \bot, \top$

\vdash, \dashv, \vDash, \Vdash, \models
$\vdash, \dashv, \vDash, \Vdash, \models$

\Vvdash, \nvdash ,\nVdash ,\nvDash ,\nVDash
$\Vvdash, \nvdash, \nVdash ,\nvDash ,\nVDash$

\ulcorner \urcorner \llcorner \lrcorner
$\ulcorner \urcorner \llcorner \lrcorner$

2.13 箭頭

\Rrightarrow, \Lleftarrow
$\Rrightarrow, \Lleftarrow$

\Rightarrow, \nRightarrow, \Longrightarrow \implies
$\Rightarrow, \nRightarrow, \Longrightarrow \implies$

\Leftarrow, \nLeftarrow, \Longleftarrow
$\Leftarrow, \nLeftarrow, \Longleftarrow$

\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff
$\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff$

\Uparrow, \Downarrow, \Updownarrow
$\Uparrow, \Downarrow, \Updownarrow$

\rightarrow \to, \nrightarrow, \longrightarrow
$\rightarrow \to, \nrightarrow, \longrightarrow$

\leftarrow \gets, \nleftarrow, \longleftarrow
$\leftarrow \gets, \nleftarrow, \longleftarrow$

\leftrightarrow, \nleftrightarrow, \longleftrightarrow
$\leftrightarrow, \nleftrightarrow, \longleftrightarrow$

\uparrow, \downarrow, \updownarrow
$\uparrow, \downarrow, \updownarrow$
\nearrow, \swarrow, \nwarrow, \searrow
$\nearrow, \swarrow, \nwarrow, \searrow$
\mapsto, \longmapsto
$\mapsto, \longmapsto$

\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
$\rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft,\upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons$

\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright
$\curvearrowleft, \circlearrowleft, \Lsh \upuparrows, \rightrightarrows, \rightleftarrows, \rightarrowtail, \looparrowright$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft
$\curvearrowright, \circlearrowright, \Rsh, \downdownarrows, \leftleftarrows, \leftrightarrows, \leftarrowtail, \looparrowleft$

\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow
$\hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow$

2.14 特殊符號(hào)

省略號(hào):數(shù)學(xué)公式中常見(jiàn)的省略號(hào)有兩種,\ldots 表示與文本底線對(duì)齊的省略號(hào),\cdots 表示與文本中線對(duì)齊的省略號(hào)。

\amalg \% \dagger \ddagger \ldots \cdots
$\amalg % \dagger \ddagger \ldots \cdots$

\smile \frown \wr \triangleleft \triangleright
$\smile \frown \wr \triangleleft \triangleright$

\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp
$\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp$

2.15 其他符號(hào)

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes
$\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes$

\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq
$\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq$

\intercal \barwedge \veebar \doublebarwedge \between \pitchfork
$\intercal \barwedge \veebar \doublebarwedge \between \pitchfork$

\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright
$\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright$
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq
$\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq$

2.16 上標(biāo)、下標(biāo)及積分等

^ 表示上標(biāo), _ 表示下標(biāo)。如果上下標(biāo)的內(nèi)容多于一個(gè)字符,需要用 {} 將這些內(nèi)容括成一個(gè)整體。上下標(biāo)可以嵌套,也可以同時(shí)使用。

  • 上標(biāo)
    a^2
    $a^2$

  • 下標(biāo)
    a_2
    $a_2$

  • 組合
    a^{2+2}
    $a^{2+2}$
    a_{i,j}
    $a_{i,j}$

  • 結(jié)合上下標(biāo)
    x_2^3
    $x_2^3$

  • 前置上下標(biāo)
    {}_1^2\!X_3^4
    ${}_1^2!X_3^4$

  • 導(dǎo)數(shù)(HTML)
    x'
    $x’$

  • 導(dǎo)數(shù)(PNG)
    x^\prime
    $x^\prime$

  • 導(dǎo)數(shù)(錯(cuò)誤)
    x\prime
    $x\prime$

  • 導(dǎo)數(shù)點(diǎn)
    \dot{x}
    $\dot{x}$
    \ddot{y}
    $\ddot{y}$

  • 向量
    \vec{c}(只有一個(gè)字母)
    $\vec{c}$
    \overleftarrow{a b},\overrightarrow{c d}
    $\overleftarrow{a b}$,$\overrightarrow{c d}$
    \overleftrightarrow{a b}``\widehat{e f g}
    $\overleftrightarrow{a b}$, $\widehat{e f g}$

  • 上弧
    (注:正確應(yīng)該用 \overarc,但在這里行不通。要用建議的語(yǔ)法作為解決辦法。)(使用 \ overarc 時(shí),需要引入 {arcs} 包。)
    \overset{\frown} {AB}
    $\overset{\frown} {AB}$

  • 上下劃線
    \overline{h i j}, \underline{k l m}
    $\overline{h i j}$, $\underline{k l m}$

  • 上括號(hào)
    \overbrace{1+2+\cdots+100}
    $\overbrace{1+2+\cdots+100}$
    \begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}
    $\begin{matrix} 5050 \ \overbrace{ 1+2+\cdots+100 } \end{matrix}$

  • 下括號(hào)
    \underbrace{a+b+\cdots+z}
    $\underbrace{a+b+\cdots+z}$
    \begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}
    $\begin{matrix} \underbrace{ a+b+\cdots+z } \ 26 \end{matrix}$

  • 求和(累加)
    \sum_{k=1}^N k^2
    $\sum_{k=1}^N k^2$
    \begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
    $\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}$

  • 求積(累乘)
    \prod_{i=1}^N x_i
    $\prod_{i=1}^N x_i$
    \begin{matrix} \prod_{i=1}^N x_i \end{matrix}
    $\begin{matrix} \prod_{i=1}^N x_i \end{matrix}$

  • 上積
    \coprod_{i=1}^N x_i
    $\coprod_{i=1}^N x_i$
    \begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
    $\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}$

  • 極限
    \lim_{n \to \infty}x_n
    $\lim_{n \to \infty}x_n$
    \begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
    $\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}$

  • 積分
    \int_{-N}^{N} e^x\, {\rm d}x
    $\int_{-N}^{N} e^x, {\rm d}x$
    本例中 \,{\rm d} 部分可省略,但建議加入,能使式子更美觀。{\rm d}可以用\mathrmk6zqhab033oa等價(jià)替換。
    \begin{matrix} \int_{-N}^{N} e^x\, \mathrmk6zqhab033oax \end{matrix}(矩陣中積分符號(hào)變小)
    $\begin{matrix} \int_{-N}^{N} e^x, \mathrmk6zqhab033oax \end{matrix}$

  • 雙重積分
    \iint_{D}^{W} \, \mathrmk6zqhab033oax\,\mathrmk6zqhab033oay
    $\iint_{D}^{W} , \mathrmk6zqhab033oax,\mathrmk6zqhab033oay$

  • 三重積分
    \iiint_{E}^{V} \, \mathrmk6zqhab033oax\,\mathrmk6zqhab033oay\,\mathrmk6zqhab033oaz
    $\iiint_{E}^{V} , \mathrmk6zqhab033oax,\mathrmk6zqhab033oay,\mathrmk6zqhab033oaz$

  • 閉合的曲線、曲面積分
    \oint_{C} x^3\, \mathrmk6zqhab033oax + 4y^2\, \mathrmk6zqhab033oay
    $\oint_{C} x^3, \mathrmk6zqhab033oax + 4y^2, \mathrmk6zqhab033oay$

  • 交集
    \bigcap_1^{n} p
    $\bigcap_1^{n} p$

  • 并集
    \bigcup_1^{k} p
    $\bigcup_1^{k} p$

2.17 分?jǐn)?shù)

通常使用\frac {分子} {分母}命令產(chǎn)生一個(gè)分?jǐn)?shù),分?jǐn)?shù)可嵌套。便捷情況可直接輸入 \frac ab 來(lái)快速生成一個(gè) $\frac {a} $。如果分式很復(fù)雜,亦可使用 分子 \over 分母 命令,此時(shí)分?jǐn)?shù)僅有一層。

功能|語(yǔ)法|效果

  • 分?jǐn)?shù)
    \frac{2}{4}=0.5
    $\frac{2}{4}=0.5$

  • 小型分?jǐn)?shù)
    \tfrac{2}{4} = 0.5
    $\tfrac{2}{4} = 0.5$

  • 連分式(大型嵌套分式)
    \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
    $\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a$

  • 大型不嵌套分式
    \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
    $\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a$

2.18 二項(xiàng)式系數(shù)

  • 二項(xiàng)式系數(shù)
    \dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
    $\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$

  • 小型二項(xiàng)式系數(shù)
    \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
    $\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$

  • 大型二項(xiàng)式系數(shù)
    \binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
    $\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}$

在以e為底的指數(shù)函數(shù)、極限和積分中盡量不要使用 \frac符號(hào):它會(huì)使整段函數(shù)看起來(lái)很怪,而且可能產(chǎn)生歧義。因此,它在專(zhuān)業(yè)數(shù)學(xué)排版中幾乎從不出現(xiàn)。

橫著寫(xiě)這些分式,中間使用斜線間隔/ (用斜線代替分?jǐn)?shù)線)。

示例:

\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}

顯示:
::: hljs-center

$\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \
\hline \
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \
\int_{-\frac\pi2}^\frac\pi2 \sin x,dx & \int_{-\pi/2}^{\pi/2}\sin x,dx \
\end{array}$

:::

2.19 矩陣、條件表達(dá)式、方程組

語(yǔ)法:

\begin{類(lèi)型}
公式內(nèi)容
\end{類(lèi)型}

類(lèi)型可以是:矩陣 matrix pmatrix bmatrix Bmatrix vmatrix Vmatrix、條件表達(dá)式 cases、多行對(duì)齊方程式 aligned、數(shù)組 array

在公式內(nèi)容中:在每一行中插入 & 來(lái)指定需要對(duì)齊的內(nèi)容,在每行結(jié)尾處使用 \ 換行。

  • 無(wú)框矩陣
    在開(kāi)頭使用 begin{matrix},在結(jié)尾使用 end{matrix},在中間插入矩陣元素,每個(gè)元素之間插入 & ,并在每行結(jié)尾處使用 \\ 。
\begin{matrix}
x & y \\
z & v
\end{matrix}

hljs-center

$\begin{matrix}
x & y \
z & v
\end{matrix}$

  • 有框矩陣
    在開(kāi)頭將 matrix 替換為 pmatrix bmatrix Bmatrix vmatrix Vmatrix 。
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}

$\begin{vmatrix}
x & y \
z & v
\end{vmatrix}$

\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}

$\begin{Vmatrix}
x & y \
z & v
\end{Vmatrix}$

使用 \cdots , $\cdots$, \ddots ,$\cdots$ , \vdots, $\cdots$ 來(lái)輸入省略符號(hào)。

\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}

$\begin{bmatrix}
0 & \cdots & 0 \
\vdots & \ddots & \vdots \
0 & \cdots & 0
\end{bmatrix}$

\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}

$\begin{Bmatrix}
x & y \
z & v
\end{Bmatrix}$

\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}

$\begin{pmatrix}
x & y \
z & v
\end{pmatrix}$

2.20 條件表達(dá)式

f(n) =
\begin{cases} 
n/2,  & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}

$f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \
3n+1, & \text{if }n\text{ is odd}
\end{cases}$

2.21 多行等式、同余式

人們經(jīng)常想要一列整齊且居中的方程式序列。使用 \begin{aligned}…\end{aligned}

\begin{aligned}
f(x) & = (m+n)^2 \\
     & = m^2+2mn+n^2 \\
\end{aligned}

$\begin{aligned}
f(x) & = (m+n)^2 \
& = m^2+2mn+n^2 \
\end{aligned}$

\begin{alignedat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
     & = m^2-2mn+n^2 \\
\end{alignedat}

$\begin{alignedat}{3}
f(x) & = (m-n)^2 \
f(x) & = (-m+n)^2 \
& = m^2-2mn+n^2 \
\end{alignedat}$

2.22 方程組

\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}

$\begin{cases}
3x + 5y + z \
7x - 2y + 4z \
-6x + 3y + 2z
\end{cases}$

\left\{\begin{aligned}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.

$\left{\begin{aligned}
3x + 5y + z \
7x - 2y + 4z \
-6x + 3y + 2z
\end{aligned}\right.$

2.23 數(shù)組與表格

通常,一個(gè)格式化后的表格比單純的文字或排版后的文字更具有可讀性。數(shù)組和表格均以 \begin{array} 開(kāi)頭,并在其后定義列數(shù)及每一列的文本對(duì)齊屬性,c l r 分別代表居中、左對(duì)齊及右對(duì)齊。若需要插入垂直分割線,在定義式中插入 | ,若要插入水平分割線,在下一行輸入前插入 \hline 。與矩陣相似,每行元素間均須要插入& ,每行元素以 \\ 結(jié)尾,最后以 \end{array} 結(jié)束數(shù)組。

示例1:

\begin{array}{c|lcr}
n & \text{左對(duì)齊} & \text{居中對(duì)齊} & \text{右對(duì)齊} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}

顯示:
$\begin{array}{c|lcr}
n & \text{左對(duì)齊} & \text{居中對(duì)齊} & \text{右對(duì)齊} \
\hline
1 & 0.24 & 1 & 125 \
2 & -1 & 189 & -8 \
3 & -20 & 2000 & 1+10i
\end{array}$

示例2:

\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z 
\end{array}

顯示:
$\begin{array}{lcl}
z & = & a \
f(x,y,z) & = & x + y + z
\end{array}$

示例3:

\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z    
\end{array}

顯示:
$\begin{array}{lcr}
z & = & a \
f(x,y,z) & = & x + y + z
\end{array}$

示例4:

\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

顯示:
$\begin{array}{ccc}
a & b & S \
\hline
0&0&1\
0&1&1\
1&0&1\
1&1&0\
\end{array}$

2.24 嵌套數(shù)組或表格

多個(gè)數(shù)組/表格可 互相嵌套 并組成一組數(shù)組/一組表格。使用嵌套前必須聲明 $$ 符號(hào)。

示例:

% outer vertical array of arrays 外層垂直表格
\begin{array}{c}
    % inner horizontal array of arrays 內(nèi)層水平表格
    \begin{array}{cc}
        % inner array of minimum values 內(nèi)層“最小值”數(shù)組
        \begin{array}{c|cccc}
        \text{min} & 0 & 1 & 2 & 3\\
        \hline
        0 & 0 & 0 & 0 & 0\\
        1 & 0 & 1 & 1 & 1\\
        2 & 0 & 1 & 2 & 2\\
        3 & 0 & 1 & 2 & 3
        \end{array}
    &
        % inner array of maximum values 內(nèi)層“最大值”數(shù)組
        \begin{array}{c|cccc}
        \text{max}&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 1 & 2 & 3\\
        2 & 2 & 2 & 2 & 3\\
        3 & 3 & 3 & 3 & 3
        \end{array}
    \end{array}
    % 內(nèi)層第一行表格組結(jié)束
    \\
    % inner array of delta values 內(nèi)層第二行Delta值數(shù)組
        \begin{array}{c|cccc}
        \Delta&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 0 & 1 & 2\\
        2 & 2 & 1 & 0 & 1\\
        3 & 3 & 2 & 1 & 0
        \end{array}
        % 內(nèi)層第二行表格組結(jié)束
\end{array}

顯示:
$% outer vertical array of arrays 外層垂直表格
\begin{array}{c}
% inner horizontal array of arrays 內(nèi)層水平表格
\begin{array}{cc}
% inner array of minimum values 內(nèi)層“最小值”數(shù)組
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\
\hline
0 & 0 & 0 & 0 & 0\
1 & 0 & 1 & 1 & 1\
2 & 0 & 1 & 2 & 2\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 內(nèi)層“最大值”數(shù)組
\begin{array}{c|cccc}
\text{max}&0&1&2&3\
\hline
0 & 0 & 1 & 2 & 3\
1 & 1 & 1 & 2 & 3\
2 & 2 & 2 & 2 & 3\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 內(nèi)層第一行表格組結(jié)束
\
% inner array of delta values 內(nèi)層第二行Delta值數(shù)組
\begin{array}{c|cccc}
\Delta&0&1&2&3\
\hline
0 & 0 & 1 & 2 & 3\
1 & 1 & 0 & 1 & 2\
2 & 2 & 1 & 0 & 1\
3 & 3 & 2 & 1 & 0
\end{array}
% 內(nèi)層第二行表格組結(jié)束
\end{array}$

2.25 用數(shù)組實(shí)現(xiàn)帶分割符號(hào)的矩陣

示例:

\left[
    \begin{array}{cc|c}
      1&2&3\\
      4&5&6
    \end{array}
\right]

顯示:
$$
\left[
\begin{array}{cc|c}
1&2&3\
4&5&6
\end{array}
\right]
$$

其中 cc|c 代表在一個(gè)三列矩陣中的第二和第三列之間插入分割線。

2.26 括號(hào)

()[]| 表示符號(hào)本身,使用 \{\} 來(lái)表示 {} 。

  • 短括號(hào)
    \frac{1}{2}
    $\frac{1}{2}$
  • 長(zhǎng)括號(hào)
    \left(\frac{1}{2} \right)
    $\left(\frac{1}{2} \right)$

使用 \left\right 來(lái)創(chuàng)建自動(dòng)匹配高度的 (圓括號(hào)),[方括號(hào)] 和 {花括號(hào)} 。

  • 圓括號(hào),小括號(hào)
    \left( \frac{a} \right)
    $\left( \frac{a} \right)$

  • 方括號(hào),中括號(hào)
    \left[ \frac{a} \right]
    $\left[ \frac{a} \right]$

  • 花括號(hào),大括號(hào)
    \left{ \frac{a} \right}
    $\left{ \frac{a} \right}$

  • 角括號(hào)
    \left \langle \frac{a} \right \rangle
    $\left \langle \frac{a} \right \rangle$

  • 單豎線,絕對(duì)值
    \left| \frac{a} \right|
    $\left| \frac{a} \right|$

  • 雙豎線,范
    \left \| \frac{a} \right \|
    $\left | \frac{a} \right |$

  • 取整函數(shù)
    \left \lfloor \frac{a} \right \rfloor
    $\left \lfloor \frac{a} \right \rfloor$

  • 取頂函數(shù)
    \left \lceil \frac{c}k6zqhab033oa \right \rceil
    $\left \lceil \frac{c}k6zqhab033oa \right \rceil$

  • 斜線與反斜線
    \left / \frac{a} \right \backslash
    $\left / \frac{a} \right \backslash$

  • 上下箭頭
    \left / \frac{a} \right \backslash
    $\left / \frac{a} \right \backslash$

  • 混合括號(hào)
    \left[ 0,1 \right)
    $\left[ 0,1 \right)$

  • 單左括號(hào)
    \left \{\frac{a} \right.
    $\left {\frac{a} \right.$

  • 單右括號(hào)
    \left. \frac{a} \right \}
    $\left. \frac{a} \right }$

可以使用 \big, \Big, \bigg, \Bigg 控制括號(hào)的大小,比如代碼:
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a} \| \right | \big \rangle \Big \} \bigg ] \Bigg )
顯示︰
$\Bigg ( \bigg [ \Big { \big \langle \left | | \frac{a} | \right | \big \rangle \Big } \bigg ] \Bigg )$

2.27 顏色

使用 \color{顏色}{文字} 來(lái)更改特定的文字顏色。

更改文字顏色需要瀏覽器支持,如果瀏覽器不知道你所需的顏色,那么文字將被渲染為黑色。

\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \\
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \\
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}

$\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\
\hline
\end{array}$

已于2024-3-29 15:06:42修改
收藏
回復(fù)
舉報(bào)
回復(fù)
相關(guān)推薦